Integral Matrices with Given Row and Column Sums
نویسنده
چکیده
Let P = (p,,) and Q = (qij) be m x n integral matrices, R and S be integral vectors. Let Nf(R, S) denote the class of all m x n integral matrices A with row sum vector R and column sum vector S satisfying P < A < Q. For a wide variety of classes ‘%$I( R, S) satisfying our main condition, we obtain two necessary and sufficient conditions for the existence of a matrix in @(R, 5). The first characterization unifies the results of Gale-Ryser, Fulkerson, and Anstee. Many other properties of (0, 1)-matrices with prescribed row and column sum vectors generalize to integral classes satisfying the main condition. We also study the decomposibility of integral classes satisfying the main condition. As a consequence of our decomposibihty theorem, it follows a theorem of Beineke and Harary on the existence of a strongly connected digraph with given indegree and outdegree sequences. Finally, we introduce the incidence graph for a matrix in an integral class I$‘(R, S) and study the invariance of an element in a matrix in terms of its incidence graph. Analogous to Minty’s Lemma for arc colorings of a digraph, we give a very simple labeling algorithm to determine if an element in a matrix is invariant. By observing the relationship between invariant positions of a matrix and the strong connectedness of its incidence graph, we present a very short graph theoretic proof of a theorem of Brualdi and Ross on invariant sets of (0, 1)-matrices. Our proof also implies an analogous theorem for a class of tournament matrices with given row sum vector, as conjectured by the analogy between bipartite tournaments and ordinary tournaments.
منابع مشابه
Boolean matrices with prescribed row/column sums and stable homogeneous polynomials: Combinatorial and algorithmic applications
We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorithmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with boolean matrices with prescribed row and column sums within simply exponential multiplicative factor. This...
متن کاملOn ensembles of low-density parity-check codes: Asymptotic distance distributions
We derive expressions for the average distance distributions in several ensembles of regular low-density parity-check codes (LDPC). Among these ensembles are the standard one defined by matrices having given column and row sums, ensembles defined by matrices with given column sums or given row sums, and an ensemble defined by bipartite graphs.
متن کاملMatrices with Prescribed Row and Column Sums
This is a survey of the recent progress and open questions on the structure of the sets of 0-1 and non-negative integer matrices with prescribed row and column sums. We discuss cardinality estimates, the structure of a random matrix from the set, discrete versions of the Brunn-Minkowski inequality and the statistical dependence between row and column sums.
متن کاملOn the Existence of Sequences and Matrices With Prescribed Partial Sums of Elements
We prove necessary and sufficient conditions for the existence of sequences and matrices with elements in given intervals and with prescribed lower and upper bounds on the element sums corresponding to the sets of an orthogonal pair of partitions. We use these conditions to generalize known results on the existence of nonnegative matrices with a given zero pattern and prescribed row and column ...
متن کاملSimple existence conditions for zero-one matrices with at most one structural zero in each row and column
We give simple necessary and sufficient conditions for the existence of a zero-one matrix with given row and column sums and at most one structural zero in each row and column. © 2006 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 52 شماره
صفحات -
تاریخ انتشار 1992